By Topic

A physics-based, analytical heterojunction bipolar transistor model, including thermal and high-current effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. J. Liou ; Dept. of Electr. & Comput. Eng., Univ. of Central Florida, Orlando, FL, USA ; L. L. Liou ; C. I. Huang ; B. Bayraktaroglu

A detailed, analytical model for predicting the DC and high-frequency performance of AlGaAs/GaAs graded heterojunction bipolar transistors (HBTs) is presented. The model is developed based on the relevant device physics, such as current-induced base pushout and thermal effects. The current gain, cutoff frequency, and maximum frequency versus the collector current density, which is a function of the applied voltage as well as the corresponding temperature in the HBT, are calculated. The results suggest that the conventional HBT model, which assumes the HBT temperature is the same as that of the ambient, can overestimate the three figures of merit considerably when the collector current density is high. Furthermore, it is shown that the present model correctly explains such experimentally observed HBT high-current behavior as the rapid falloff of the current gain and cutoff frequency. The model predictions compare favorably with the results obtained from a model which solves numerically the Poisson and continuity equations coupled with the lattice heat equation

Published in:

IEEE Transactions on Electron Devices  (Volume:40 ,  Issue: 9 )