System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Signal processing with fractional lower order moments: stable processes and their applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shao, M. ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Nikias, C.L.

Non-Gaussian statistical signal processing is important when signals and/or noise deviate from the ideal Gaussian model. Stable distributions are among the most important non-Gaussian models. They share defining characteristics with the Gaussian distribution, such as the stability property and central limit theorems, and in fact include the Gaussian distribution as a limiting case. To help engineers better understand the stable models and develop methodologies for their applications in signal processing. A tutorial review of the basic characteristics of stable distributions and stable signal processing is presented. The emphasis is on the differences and similarities between stable signal processing methods based on fractional lower-order moments and Gaussian signal processing methods based on second-order moments

Published in:

Proceedings of the IEEE  (Volume:81 ,  Issue: 7 )