By Topic

Artificial parameter homotopy methods for the DC operating point problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Melville, R.C. ; AT&T Bell Labs., Murray Hill, NJ, USA ; Trajkovic, L. ; Fang, S.-C. ; Watson, L.T.

Efficient and robust computation of one or more of the operating points of a nonlinear circuit is a necessary first step in a circuit simulator. The application of globally convergent probability-one homotopy methods to various systems of nonlinear equations that arise in circuit simulation is discussed. The coercivity conditions required for such methods are established using concepts from circuit theory. The theoretical claims of global convergence for such methods are substantiated by experiments with a collection of examples that have proved difficult for commercial simulation packages that do not use homotopy methods. Moreover, by careful design of the homotopy equations, the performance of the homotopy methods can be made quite reasonable. An extension to the steady-state problem in the time domain is also discussed

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:12 ,  Issue: 6 )