By Topic

Finite-element method applied to EMC problems (PCB environment)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Laroussi ; Dept. of Electr. Eng., Ottawa Univ., Ont., Canada ; G. I. Costache

In a printed circuit board environment, the solution domain is highly inhomogeneous, and analytic expressions for design parameters are very difficult to obtain, even for the simplest configuration. The finite element method (FEM) offers an attractive alternative for solving the problem in all its aspects including the determination of parasitic effects. A problem of practical interest, related to crosstalk, is formulated to be solved using the FEM. The technique is first applied to obtain the field distribution, and then the field is used to calculate transmission line parameters of conducting tracks on printed circuit boards. FEM is used to solve a radiation problem in three dimensions. The solution is used to predict far-field radiation levels of electronic equipment from near-field measurements.

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:35 ,  Issue: 2 )