By Topic

Application of FDTD method to analysis of electromagnetic radiation from VLSI heatsink configurations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
K. Li ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA ; C. F. Lee ; S. Y. Poh ; R. T. Shin
more authors

The electromagnetic radiation from a VLSI chip package and heatsink structure is analyzed by means of the finite-difference-time-domain (FDTD) technique. The dimensions of a typical configuration call for a multizone gridding scheme in the FDTD algorithm to accommodate fine grid cells in the vicinity of the heatsink and package cavity and sparse gridding in the remainder of the computational domain. The issues pertaining to the effects of the heatsink on the overall radiative capacity of the configuration are addressed. Analyses are facilitated by using simplified heatsink models and by using dipole elements as sources of electromagnetic energy to model the VLSI chip. The potential for enhancement of spurious emissions by the heatsink structure is illustrated. For heatsinks of typical dimensions, resonance is possible within the low gigahertz frequency range. The exploitation of the heatsink as an emissions shield by appropriate implementation schemes is discussed and evaluated.

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:35 ,  Issue: 2 )