By Topic

Thermo-magnetic metal flexure actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
H. Guckel ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA ; J. Klein ; T. Christenson ; K. Skrobis
more authors

Deep X-ray lithography and metal plating when coupled with a sacrificial layer, SLIGA, lends itself to the fabrication of very high aspect ratio metal structures which are mechanically stiff in the substrate direction and can be very flexible in the direction parallel to the substrate. These properties can be exploited by producing a family of new flexure actuators which can produce very significant motion via thermal expansion and magnetic forces. The magnitude of thermal effects and magnetic forces are dependent on actuator geometry. An understanding of each effect allows the design of an actuator which is dominated by one or both effects. The end result is devices intended for large motion actuators in microswitch and positioning applications. They are also useful for material constant measurements of electroplated metals.<>

Published in:

Solid-State Sensor and Actuator Workshop, 1992. 5th Technical Digest., IEEE

Date of Conference:

22-25 June 1992