By Topic

Exact calculation of synchronization sequences based on binary decision diagrams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pixley, C. ; Mitsubishi Electric Res. Lab. Inc., Cambridge, MA, USA ; Jeong, S.-W. ; Hachtel, G.D.

A synchronization sequence for a synchronous design D is a sequence of primary input vectors which when applied to any initial state of D will drive D to a single state, called a reset state. The authors present efficient methods based upon the universal alignment theorem and binary decision diagrams to compute a synchronization sequence, to compute a tight lower bound for the length of such a sequence, and to check that an initial state given in the specification is a reset state. It was shown in the experiments that the proposed method can handle fairly large circuits and the length of the actual synchronization sequence computed is quite close to the lower bound

Published in:

Design Automation Conference, 1992. Proceedings., 29th ACM/IEEE

Date of Conference:

8-12 Jun 1992