By Topic

A general scheme for minimising Bayes risk and incorporating priors applicable to supervised learning systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
McMichael, D. ; Control Syst. Centre, Univ. of Manchester Inst. of Sci. & Technol., UK

BARTIN (Bayesian real-time network) is a general structure for learning Bayesian minimum-risk decision schemes. It comprises two unspecified supervised learning nets and associated elements. The structure allows separate prior compensation and risk minimization and is thus able to learn Bayesian minimum-risk decision schemes accurately from training data and priors alone. The design provides a new mechanism (the prior compensator) for correcting for discrepancies between class probabilities in training and recall. The same mechanism can be adapted to bias output decisions. The general structure of BARTIN is described and the enumerative and Gaussian specific form are presented. The enumerative form of BARTIN was applied to a visual inspection problem in comparison with the multilayer perceptron

Published in:

Neural Networks, 1992. IJCNN., International Joint Conference on  (Volume:3 )

Date of Conference:

7-11 Jun 1992