By Topic

An application of a recurrent network to an intrusion detection system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Debar, H. ; CSEE/DCI, Les Ulis, France ; Dorizzi, B.

The authors present an application of recurrent neural networks for intrusion detection. A partially recurrent network has been chosen for this particular application. The neural network acts as a data filter that highlights anomalous or suspicious data according to previously learned patterns. It has proven adaptive, because the same results for several users have been obtained with varying activities. The network cosine function was tested, and a hetero-associative version of the network was used to analyze the flipflop problem

Published in:

Neural Networks, 1992. IJCNN., International Joint Conference on  (Volume:2 )

Date of Conference:

7-11 Jun 1992