Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Microwave emission of vegetation: sensitivity to leaf characteristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wigneron, J.-P. ; INRA, Bioclimatologie, Montfavet, France ; Calvet, J.-C. ; Kerr, Y. ; Chanzy, A.
more authors

The effects of leaf characteristics on the microwave emission of land surfaces are analyzed. In order to simulate these effects, a radiative transfer model is presented. The medium consists of a vegetated layer containing randomly oriented leaves, modeled as elliptic-shaped scatterers, over the ground surface. Radiative transfer equations are solved with a discrete-ordinate-eigenanalysis method. The calculation of the phase matrix of the elliptic scatterers is based on the generalized Rayleigh-Gans approximation, which increases the frequency range of the modeling. The sensitivity of brightness temperature and polarization ratio to leaf characteristics, volume fraction, gravimetric moisture, size, shape, and inclination distribution is investigated at C-, and X-band. The behavior of the simulated emission of a soybean canopy versus frequency and incidence angle is studied for different soil moisture levels. Up to 10 GHz the microwave emission appears to contain significant information on underlying soil moisture

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:31 ,  Issue: 3 )