Cart (Loading....) | Create Account
Close category search window

A new clustering algorithm applicable to multispectral and polarimetric SAR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yiu-Fai Wong ; Lawrence Livermore Nat. Lab., CA, USA ; Posner, Edward C.

The authors applied a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, a 12-dimensional feature vector for each pixel was extracted from the scattering matrix. The clustering algorithm partitioned a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and its insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:31 ,  Issue: 3 )

Date of Publication:

May 1993

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.