By Topic

Measurement and modelling of radiative coupling in oscillator arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
York, R.A. ; Dept. of Electr. Eng., California Univ., Santa Barbara, CA, USA ; Compton, R.C.

Arrays of coupled oscillators can be used for power-combining at microwave and millimeter-wave frequencies, and have been successfully demonstrated with a variety of devices. Such arrays have also recently been mode-locked for pulse generation, and can be configured for phase-shifterless beam scanning. The nonlinear theory of coupled oscillator phase dynamics depends crucially on the parameters describing the coupled between oscillators. Methods for experimental characterization of these parameters are described here, and simple models which reproduce the measurements quite well are developed. The models apply to radiative coupling and the effects of external reflectors which are sometimes used for stabilization. The theory is verified with a two-oscillator system

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:41 ,  Issue: 3 )