By Topic

An algebraic model for asynchronous circuits verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Berthet ; Dept. d'Inf. et Recherche Operationelle, Montreal Univ., Que., Canada ; E. Cerny

An algebraic methodology for comparing switch-level circuits with higher-level specifications is presented. Switch-level networks, `user' behavior, and input constraints are modeled as asynchronous machines. The model is based on the algebraic theory of characteristic functions (CF). An asynchronous automation is represented by a pair of CFs, called a dynamic CF (DCF): the first CF describes the potential stable states, and the second CF describes the possible transitions. The set of DCFs is a Boolean algebra. Machine composition and internal variables abstraction correspond, respectively, to the product and sum operations of the algebra. Internal variables can be abstracted under the presence of a domain constraint. The constraint is validated by comparison to the outside behavior. The model is well suited for speed-independent circuits for which the specification is given as a collection of properties. Verification reduces to the validation of Boolean inequalities

Published in:

IEEE Transactions on Computers  (Volume:37 ,  Issue: 7 )