Cart (Loading....) | Create Account
Close category search window
 

Analog CMOS implementation of cellular neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baktir, I.A. ; Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey ; Ali Tan, M.

The analog CMOS circuit realization of cellular neural networks with transconductance elements is presented. This realization can be easily adapted to various types of applications in image processing just by choosing the appropriate transconductance parameters according to the predetermined coefficients. The effectiveness of the designed circuits for connected component detection is shown by HSPICE simulations. For fixed function cellular neural network circuits, the number of transistors is reduced further by using multi-input transconductance elements

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:40 ,  Issue: 3 )

Date of Publication:

Mar 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.