By Topic

Multiresolution texture segmentation with application to diagnostic ultrasound images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Muzzolini, R. ; Saskatchewan Univ., Saskatoon, Sask., Canada ; Yang, Y.-H. ; Pierson, R.

A multiresolution texture segmentation (MTS) approach to image segmentation that addresses the issues of texture characterization, image resolution, and time to complete the segmentation is presented. The approach generalizes the conventional simulated annealing method to a multiresolution framework and minimizes an energy function that is dependent on the resolution of the size of the texture blocks in an image. A rigorous experimental procedure is also proposed to demonstrate the advantages of the proposed MTS approach on the accuracy of the segmentation, the efficiency of the algorithm, and the use of varying features at different resolution. Semireal images, created by sampling a series of diagnostic ultrasound images of an ovary in vitro, were tested to produce statistical measures on the performance of the approach. The ultrasound images themselves were then segmented to determine if the approach can achieve accurate results for the intended ultrasound application. Experimental results suggest that the MTS approach converges faster and produces better segmentation results than the single-level approach

Published in:

Medical Imaging, IEEE Transactions on  (Volume:12 ,  Issue: 1 )