By Topic

Torque sensorless control in multidegree-of-freedom manipulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Murakami, T. ; Dept. of Electr. Eng., Keio Univ., Yokohama, Japan ; Yu, F. ; Ohnishi, K.

A torque sensorless control for a multi-degree-of-freedom manipulator is described. In the method, two disturbance observers are applied to each joint. One is used to realize a robust motion controller. The other is used to obtain a sensorless torque controller. A robust acceleration controller based on the disturbance observer is shown. To obtain the sensorless torque control, it is necessary to calculate the reaction torque when the mechanical system performs a force task. The calculation method for the reaction torque is explained. Then the method is expanded to workspace force control in the multi-degree-of-freedom manipulator. Several experimental results are shown to confirm the validity of the proposed sensorless force controller

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:40 ,  Issue: 2 )