By Topic

On a general optimal algorithm for multirate output feedback controllers for linear stochastic periodic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nie-Zen Yen ; Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Yung-Chun Wu

A modified optimal algorithm for multirate output feedback controllers of linear stochastic periodic systems is developed. By combining the discrete-time linear quadratic regulation (LQR) control problem and the discrete-time stochastic linear quadratic regulation (SLQR) control problem to obtain an extended linear quadratic regulation (ELQR) control problem, one derives a general optimal algorithm to balance the advantages of the optimal transient response of the LQR control problem and the optimal steady-state regulation of the SLQR control problem. In general, the solution of this algorithm is obtained by solving a set of coupled matrix equations. Special cases for which the coupled matrix equations can be reduced to a discrete-time algebraic Riccati equation are discussed. A reducable case is the optimal algorithm derived by H.M. Al-Rahmani and G.F. Franklin (1990), where the system has complete state information and the discrete-time quadratic performance index is transformed from a continuous-time one

Published in:

Automatic Control, IEEE Transactions on  (Volume:38 ,  Issue: 6 )