By Topic

Point of collapse and continuation methods for large AC/DC systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Canizares, C.A. ; Escuela Politecnica Nacional, Quito, Ecuador ; Alvarado, F.L.

The implementation of both point of collapse (PoC) methods and continuation methods for the computation of voltage collapse points (saddle-node bifurcations) in large AC/DC power systems is described. The performance of these methods is compared for real systems of up to 2158 buses. Computational details of the implementation of the PoC and continuation methods are detailed, and the unique problems encountered due to the presence of high-voltage direct-current (HVDC) transmission, area interchange power control, regulating transformers, and voltage and reactive power limits are discussed. The characteristics of a robust PoC power flow program are presented, and its application to detection and solution of voltage stability problems is demonstrated

Published in:

Power Systems, IEEE Transactions on  (Volume:8 ,  Issue: 1 )