By Topic

The complex EGI: a new representation for 3-D pose determination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. B. Kang ; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; K. Ikeuchi

The complex extended Gaussian image (CEGI), a 3D object representation that can be used to determine the pose of an object, is described. In this representation, the weight associated with each outward surface normal is a complex weight. The normal distance of the surface from the predefined origin is encoded as the phase of the weight, whereas the magnitude of the weight is the visible area of the surface. This approach decouples the orientation and translation determination into two distinct least-squares problems. The justification for using such a scheme is twofold: it not only allows the pose of the object to be extracted, but it also distinguishes a convex object from a nonconvex object having the same EGI representation. The CEGI scheme has the advantage of not requiring explicit spatial object-model surface correspondence in determining object orientation and translation. Experiments involving synthetic data of two polyhedral and two smooth objects are presented to illustrate the feasibility of this method

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:15 ,  Issue: 7 )