Cart (Loading....) | Create Account
Close category search window
 

Constructing intrinsic parameters with active models for invariant surface reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vemuri, B.C. ; Dept. of Comput. & Inf. Sci., Florida Univ., Gainesville, FL, USA ; Malladi, R.

A technique for constructing a canonical surface parameterization in terms of lines of curvature is presented. Two methods of computing the canonical invariant representation are also presented. In the first method, a static instance of the controlled continuity spline is used for the stabilizer. Ways to modify it to reflect a change of parameters to the lines of curvature are described. In the second method, the dynamic instance of the controlled continuity spline called the deformable model is used. A force field defined in terms of the principal vectors is synthesized and applied to the parameter curves of the deformable model to coerce them along the lines of curvature. In essence, any transformation of parameters requires a modification of the stabilizer in the first method, whereas in the second method, it is tantamount to synthesizing a new force field. Experimental results with real and synthetic range data are included

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 7 )

Date of Publication:

Jul 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.