By Topic

A slow wave free-electron laser in a longitudinal wiggler field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mishra, G. ; Sch. of Phys., Devi Ahilya Univ., Indore, India ; Maheshwari, K.P. ; Praburam, G.

Linearized Vlasov-Maxwell equations are solved to obtain the growth rate of free electron laser instability from a tenuous relativistic electron beam propagating in a partially dielectric loaded waveguide immersed in combined axial and longitudinal wiggler magnetic fields. The instability appears via cyclotron resonance interactions for wave perturbations very close to w-kVz-wc=nk 0VZ where n is the general harmonic number. For n=0, the gain is similar to a slow wave cyclotron amplifier. For n⩾1, the growth rate is substantially larger than the standard slow wave free electron laser scheme utilizing a transverse wiggler field

Published in:

Plasma Science, IEEE Transactions on  (Volume:21 ,  Issue: 1 )