By Topic

Adiabatic frequency up-conversion of a powerful electromagnetic pulse producing gas ionization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
V. B. Gildenburg ; Inst. of Appl. Phys., Russian Acad. of Sci., Nizhny Novgorod, Russia ; A. V. Kim ; V. A. Krupnov ; V. E. Semenov
more authors

The theory of strong frequency upconversion of the powerful ionizing electromagnetic radiation in gases is presented based on the modified nonlinear geometrical optics approximation. The permanent spectrum upshift versus propagation path, exceeding considerably the initial frequency, is demonstrated without strong wave dissipation for the cases of impact and field-induced ionization in the high-intensity field range. Reflectionless propagation into the supercritical plasma and broad-band tuning of the laser radiation are emphasized as highly promising physical applications of the phenomenon described

Published in:

IEEE Transactions on Plasma Science  (Volume:21 ,  Issue: 1 )