Cart (Loading....) | Create Account
Close category search window
 

Effects of space radiation damage and temperature on the noise in CCDs and LDD MOS transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Murowinski, R.G. ; Dominion Astrophys. Obs., Victoria, BC, Canada ; Linzhuang, G. ; Deen, M.J.

Lightly doped drain (LDD) MOS transistors were subjected to proton radiation damage representative of the damage they would receive on a typical orbital space telescope mission. The noise spectral density was measured as a function of gate voltage, temperature and total radiation dose. These data were used to model the resultant noise lower limit read for that transistor when used as the charge-conversion, output stage of a charge-coupled-device (CDD) imaging array detector. Very clear evidence of excess noise being added to the CCD output as a function of radiation was found. It is possible to select combinations of temperature, CCD dual-correlated sample time constant and gate voltage which minimize the performance degradation due to this excess noise

Published in:

Nuclear Science, IEEE Transactions on  (Volume:40 ,  Issue: 3 )

Date of Publication:

Jun 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.