By Topic

Surface roughness determination using spectral correlations of scattered intensities and an artificial neural network technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
K. Yoshitomi ; Dept. of Comput. Sci. & Commun. Eng., Kyushu Univ., Fukuoka, Japan ; A. Ishimaru ; J. -N. Hwang ; J. S. Chen

An artificial neural network (ANN) technique is applied to the determination of the RMS height and the correlation distance of one-dimensional rough surfaces. The surface is illuminated by a beam wave, and the intensity correlations of the scattered wave at two wavelengths in the specular and backward directions are used to determine the roughness parameters. Scattered intensity correlations calculated by Monte Carlo simulations are used to train the ANN, and two methods, the explicit inversion method and the iterative constrained inversion method, are used to perform the inversion. The inversion values are compared with the target values, and the iterative constrained method is shown to give smaller errors, but it requires longer computer CPU time

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:41 ,  Issue: 4 )