By Topic

Dynamic and static fusion gait of a quadruped walking vehicle on a winding path

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yoneda, K. ; Tokyo Inst. of Technol., Japan ; Hirose, S.

The authors previously (1989) proposed the concept of dynamic and static fusion gait control and discussed a basic control scheme for the purpose of adaptive selection of these gaits during continuous walking. They extend the concept to walking at variable speeds along a winding path. The motion scheme is discussed on the basis of a generalized trot gait and incorporates stability control based on feedforward and feedback control; trajectory modification is based on the zero moment point concept. The validity of these discussions is verified by walking experiments with quadruped walking vehicles TITAN IV and TITAN VI; e.g., dynamic and static fusion gaits at velocities from zero to 400 mm/sec by TITAN IV, and walk with dynamic stability along a circular winding path at a velocity of 100 mm/sec by TITAN VI. At present, dynamic walk on rugged terrain is not possible, but it may be made possible by introducing feedback control as discussed

Published in:

Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on

Date of Conference:

12-14 May 1992