Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Dynamic feedback linearization of nonholonomic wheeled mobile robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
d'Andrea-Novel, B. ; Centre Autom. et Syst., Ecole des Mines de Paris, Fontainebleau, France ; Bastin, G. ; Campion, G.

Smooth time-varying laws can solve the stabilization problem of nonholonomic mechanical systems. The authors show that by means of dynamic state feedback, it is possible for three-wheeled mobile robots to track arbitrary fast trajectories not reduced to equilibrium points. Dynamical modeling of nonholonomic mechanical systems for the case of three-wheeled mobile robots is considered. Dynamic feedback allows solution of the tracking problem for an omnidirectional mobile robot with less motors than degrees of freedom. This is possible by choosing output functions depending on the mass repartition of the robot

Published in:

Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on

Date of Conference:

12-14 May 1992