By Topic

Generation of energy-optimal trajectories for an autonomous underwater vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Spangelo, I. ; Div. of Eng. Cybern., Norwegian Inst. of Technol., Trondheim, Norway ; Egeland, O.

Energy-optimal trajectories for an autonomous underwater vehicle can be computed using a numerical solution of the optimal control problem. The vehicle is modeled with the six-dimensional nonlinear and coupled equations of motion, controlled with DC-motors in all degrees of freedom. The actuators are modeled and controlled with velocity loops. The dissipated energy is expressed in terms of the control variables as a nonquadratic function. Two different numerical methods are used in this study, a function space conjugate gradient (CG) method, and a control vector parameterization (CVP) method. Energy-optimal trajectories were computed in simulation experiments. Good results were achieved with the CVP method, which was superior to the CG method

Published in:

Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on

Date of Conference:

12-14 May 1992