By Topic

An optimization technique for ordered (binary) decision diagrams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dvorak, V. ; Tech. Univ. of Brno, Czechoslovakia

The minimum-cost ordered (binary) decision diagram (OBDD) (also a reduced OBDD or ROBDD) is a canonical representation for a logic function, given an ordering on its variables (R. Bryant, 1986). A new optimization technique is presented for suboptimal synthesis of ODDs of complete as well as partial multiple-output Boolean functions. The method is based on iterative decomposition. The central notion in this process is that of subfunctions, whereas in ODDs there are decision nodes. There is, however, 1:1 mapping between them: a level of decision nodes in the ODD corresponds to a set of subfunctions recognized in a corresponding decomposition step. The technique is computationally effective and deals with incomplete functions frequently used in practice. A small synthesis example is given to introduce a new technique for ROBDDs. The results and some experience with the optimization program are described.<>

Published in:

CompEuro '92 . 'Computer Systems and Software Engineering',Proceedings.

Date of Conference:

4-8 May 1992