By Topic

Optimal aspect ratios of building blocks in VLSI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wimer, S. ; IBM, Haifa, Israel ; Koren, I. ; Cederbaum, I.

The building blocks in a given floorplan have several possible physical implementations yielding different layouts. A discussion is presented of the problem of selecting an optimal implementation for each building block so that the area of the final layout is minimized. A polynomial algorithm that solves this problem for slicing floorplans was presented elsewhere, and it has been proved that for general (nonslicing) floorplans the problem is NP-complete. The authors suggest a branch-and-bound algorithm which proves to be very efficient and can handle successfully large general nonslicing floorplans. The high efficiency of the algorithm stems from the branching strategy and the bounding function used in the search procedure. The branch-and-bound algorithm is supplemented by a heuristic minimization procedure which further prunes the search, is computationally efficient, and does not prevent achieving a global minimum. Finally, the authors show how the nonslicing and the slicing algorithms can be combined to handle efficiently very large general floorplans

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:8 ,  Issue: 2 )