By Topic

Modular VLSI architectures for computing the arithmetic Fourier transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Park, H. ; Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA, USA ; Prasanna, V.K.

Modular, area-efficient VLSI architectures for computing the arithmetic Fourier transform (AFT) are proposed. By suitable design of PEs and I/O sequencing, nonuniform data dependencies in the AFT computation which require nonequidistant inputs and assignment of Mobius function values are resolved. The proposed design employs 2N+1 PEs to compute 2N+1 Fourier coefficients. Each PE has an adder and a fixed amount of local storage, and one PE has a multiplier. I/O with the host is performed using a fixed number of channels. This results in simple PE organization, compared with those needed in known DFT/FFT architectures. The design achieves O(N) speedup. It uses significantly fewer PEs than designs in the literature and supports real-time applications by allowing continuous sequential input. It can be extended to achieve linear speedup in a fixed size array with 2p+1 PEs, 1⩽pN

Published in:

Signal Processing, IEEE Transactions on  (Volume:41 ,  Issue: 6 )