By Topic

In the optimum design of the block adaptive FIR digital filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, T. ; Inst. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Chin-Liang Wang

A general optimum block adaptive (GOBA) algorithm for adaptive FIR (finite impulse response) filtering is presented. In this algorithm, the correction terms for the filter coefficients in each block, instead of the convergence factors, are optimized in a least squares sense. There are no constraints on the block length L and the filter tap number N. It is shown that the GOBA algorithm is reduced to the normalized LMS algorithm when LN. The convergence of the GOBA algorithm can be assured if the correlation matrix of the input signal is positive definite. Computer simulations based on an efficient computing procedure confirm that the GOBA algorithm achieves faster convergence with slightly degraded convergence accuracy in stationary environments and better weight tracking capability in nonstationary environments as compared to existing block adaptive algorithms with no constraints on L and N

Published in:

Signal Processing, IEEE Transactions on  (Volume:41 ,  Issue: 6 )