By Topic

Nonuniform image motion estimation in reduced coefficient transformed domains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Namazi, N.M. ; Dept. of Electr. Eng., Catholic Univ. of America, Washington, DC, USA ; Lipp, J.I.

The transformed domain maximum likelihood (TDML) algorithm for image motion estimation is presented. This algorithm finds a solution which maximizes a log-likelihood function using a steepest ascent scheme. Important characteristics of the algorithm are the inclusion of noise in the signal model, the consideration of motion as a nonuniform process, and calculation of convergence parameters by means of a linear analysis. Simulation on real image sequences demonstrate the validity of the motion estimator. The experiments also verify the validity of the equations presented for the calculation of the convergence parameters. Additional experiments performed to determine the noise sensitivity of the TDML show that noise resistance can be obtained using a reduced coefficient transform (RCT) TDML algorithm. An additional benefit of using an RCT with the TDML algorithm is an increase in the speed of the algorithm without significant performance degradation. Two of the common transforms, Haar and Walsh-Hadamard, are shown to have some interesting properties when utilized with the RCT-TDML algorithm

Published in:

Image Processing, IEEE Transactions on  (Volume:2 ,  Issue: 2 )