By Topic

Blur identification by residual spectral matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Savakis, A.E. ; Coll. of Eng. & Appl. Sci., Rochester Univ., NY, USA ; Trussell, H.J.

The estimation of the point spread function (PSF) for blur identification, often a necessary first step in the restoration of real images, method is presented. The PSF estimate is chosen from a collection of candidate PSFs, which may be constructed using a parametric model or from experimental measurements. The PSF estimate is selected to provide the best match between the restoration residual power spectrum and its expected value, derived under the assumption that the candidate PSF is equal to the true PSF. Several distance measures were studied to determine which one provides the best match. The a priori knowledge required is the noise variance and the original image spectrum. The estimation of these statistics is discussed, and the sensitivity of the method to the estimates is examined analytically and by simulations. The method successfully identified blurs in both synthetically and optically blurred images

Published in:

Image Processing, IEEE Transactions on  (Volume:2 ,  Issue: 2 )