By Topic

Tracking deformable objects in the plane using an active contour model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Leymarie ; Dept. of Electr. Eng., McGill Univ., Montreal, Que., Canada ; M. D. Levine

The problems of segmenting a noisy intensity image and tracking a nonrigid object in the plane are discussed. In evaluating these problems, a technique based on an active contour model commonly called a snake is examined. The technique is applied to cell locomotion and tracking studies. The snake permits both the segmentation and tracking problems to be simultaneously solved in constrained cases. A detailed analysis of the snake model, emphasizing its limitations and shortcomings, is presented, and improvements to the original description of the model are proposed. Problems of convergence of the optimization scheme are considered. In particular, an improved terminating criterion for the optimization scheme that is based on topographic features of the graph of the intensity image is proposed. Hierarchical filtering methods, as well as a continuation method based on a discrete sale-space representation, are discussed. Results for both segmentation and tracking are presented. Possible failures of the method are discussed

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:15 ,  Issue: 6 )