By Topic

Shape and nonrigid motion estimation through physics-based synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Metaxas, D. ; Dept. of Comput. & Inf. Sci., Pennsylvania Univ., Philadelphia, PA, USA ; Terzopoulos, D.

A physics-based framework for 3-D shape and nonrigid motion estimation for real-time computer vision systems is presented. The framework features dynamic models that incorporate the mechanical principles of rigid and nonrigid bodies into conventional geometric primitives. Through the efficient numerical simulation of Lagrange equations of motion, the models can synthesize physically correct behaviors in response to applied forces and imposed constraints. Applying continuous Kalman filtering theory, a recursive shape and motion estimator that employs the Lagrange equations as a system model is developed. The system model continually synthesizes nonrigid motion in response to generalized forces that arise from the inconsistency between the incoming observations and the estimated model state. The observation forces also account formally for instantaneous uncertainties and incomplete information. A Riccati procedure updates a covariance matrix that transforms the forces in accordance with the system dynamics and prior observation history. Experiments involving model fitting and tracking of articulated and flexible objects from noisy 3-D data are described

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 6 )