By Topic

Dynamic equalization during charging of serial energy storage elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. C. Hopkins ; Dept. of Electr. Eng., Auburn Univ., AL, USA ; C. R. Mosling ; S. T. Hung

A technique is described that equalizes the amount of charge in a serial string of energy-storage cells during charging by using DC-to-DC converters to divert portions of the charging current past selected cells (or groups of cells). When no converters are operating, the charging current through the string is equal to that of the charging source. As the string charges, one cell eventually reaches a threshold voltage VA. At threshold, a shunt converter is activated to divert current around the cell, thus maintaining it at VA. The diverted current extracts energy, which is returned to the charging bus and appears as an additional charging current to the source. This positive feedback increases the current available for charging the string and allows the least charged cells, or cells of larger capacity, to be charged at higher rates than available directly from the source. During discharging, the converters across the remaining cells supply energy to the bus, while the converter across the open cell maintains a constant terminal voltage. The maximum current gain of the system is equal to the number of converters used in the system

Published in:

IEEE Transactions on Industry Applications  (Volume:29 ,  Issue: 2 )