By Topic

State-dependent routing on symmetric loss networks with trunk reservations. I

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mitra, D. ; AT&T Bell Lab., Murray Hill, NJ, USA ; Gibbens, R.J. ; Huang, B.D.

The aggregated-least-busy-alternative (ALBA), a distributed, state-dependent, dynamic routing strategy for circuit-switched loss networks is discussed. The networks considered are symmetric and fully connected. The offered calls form Poisson streams, and routes have at most two links. In ALBA(K), the states of each link are lumped into K (K⩾2) aggregates, and the route of each call is determined by local information on the aggregate states of the links of the alternate routes at the time of the call's arrival. The last aggregate is always the set of states reserved for direct traffic. A fixed-point model for ALBA(K) for general K is presented. The particular case of ALBA in which there is no aggregation is least busy alternative (LBA); ALBA(2) represents the other extreme of aggregation. Simulation and analytic results for LBA are compared. An asymptotic scaling based on the fixed-point models is also discussed. It is shown that there is a dichotomy in network behavior: if the offered traffic is below a threshold, then the network loss probability decreases exponentially with increasing network size, and above the threshold, performance is poor

Published in:

Communications, IEEE Transactions on  (Volume:41 ,  Issue: 2 )