By Topic

Universal MOSFET hole mobility degradation models for circuit simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Agostinelli, V.M., Jr. ; Microelectron. Res. Center, Texas Univ., Austin, TX, USA ; Yeric, G.M. ; Tasch, A.F., Jr.

Universal, semi-empirical MOSFET hole inversion layer mobility degradation models for use in circuit simulation programs such as SPICE are presented. By accurately predicting the mobility degradation due to acoustic phonon scattering and surface roughness scattering for p-channel MOSFETs at room temperature, these models eliminate the need for fitting parameters for each technology, which is required in the current SPICE level 3 model. The expressions reported accurately predict the mobility over a very wide range of channel doping concentrations, gate oxide thicknesses, gate voltage, and substrate bias, and they agree very well with recently published experimental mobility degradation data. When implemented in a circuit simulation code, these models will accurately determine the channel mobility in surface p-channel MOSFETs using only the channel doping concentration, gate oxide thickness, substate bias, and applied gate drive voltage as input parameters

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:12 ,  Issue: 3 )