Cart (Loading....) | Create Account
Close category search window
 

A computationally efficient unified approach to the numerical analysis of the sensitivity and noise of semiconductor devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghione, G. ; Dipartimento di Elettronica, Politecnico di Torino, Turin, Italy ; Filicori, F.

The authors present a computationally efficient unified approach to the numerical simulation of sensitivity and noise in majority-carrier semiconductor devices that is based on the extension to device simulation of the adjoint method for sensitivity and noise analysis of electrical networks. Sensitivity and device noise analysis based on physical models are shown to have a common background, since they amount to evaluating the small-signal device response to an impressed, distributed current source. This problem is addressed by means of a Green's function technique akin to Shockley's impedance field method. To allow the efficient numerical evaluation of the Green's function within the framework of a discretized physical model, inter-reciprocity concepts, based on the introduction of an adjoint device, are exploited. Examples of implementation involving GaAs MESFETs are discussed

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:12 ,  Issue: 3 )

Date of Publication:

Mar 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.