By Topic

A computationally efficient unified approach to the numerical analysis of the sensitivity and noise of semiconductor devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Ghione ; Dipartimento di Elettronica, Politecnico di Torino, Turin, Italy ; F. Filicori

The authors present a computationally efficient unified approach to the numerical simulation of sensitivity and noise in majority-carrier semiconductor devices that is based on the extension to device simulation of the adjoint method for sensitivity and noise analysis of electrical networks. Sensitivity and device noise analysis based on physical models are shown to have a common background, since they amount to evaluating the small-signal device response to an impressed, distributed current source. This problem is addressed by means of a Green's function technique akin to Shockley's impedance field method. To allow the efficient numerical evaluation of the Green's function within the framework of a discretized physical model, inter-reciprocity concepts, based on the introduction of an adjoint device, are exploited. Examples of implementation involving GaAs MESFETs are discussed

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:12 ,  Issue: 3 )