By Topic

Terrain classification in SAR images using principal components analysis and neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Azimi-Sadjadi, M.R. ; Dept. of Electr. Eng., Colorado State Univ., Fort Collins, CO, USA ; Ghaloum, S. ; Zoughi, R.

The development of a neural-network-based classifier for classifying three distinct scenes (urban, park, and water) from several polarized SAR images of the San Francisco Bay area is discussed. The principal components (PC) scheme or Karhunen-Loeve transform is used to extract the salient features of the input data, and to reduce the dimensionality of the feature space prior to the application to the neural networks. Using the PC scheme along with the polarized images used in the present study led to substantial improvements in the classification rates when compared with previous studies. When a combined polarization architecture was used, the classification rate for water, urban, and park areas improved to 100%, 98.7%, and 96.1%, respectively

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:31 ,  Issue: 2 )