By Topic

Spacecraft studies of planetary surfaces using bistatic radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. A. Simpson ; Center for Radar Astron., Stanford Univ., CA, USA

Spaceborne transmitters have been used in bistatic geometries for a number of planetary surface studies including inference of topography, Fresnel reflectivity, and RMS surface slopes on the Moon, Mars, and Venus. For the Moon and Mars in particular, the bistatic geometry has enabled remote probing in regions and under conditions not obtainable with Earth-based radar systems, yielding information about surface characteristics and properties on scales of centimeters to hundreds of meters that complements monostatic radar observations. A new generation of planetary spacecraft now provides opportunities for further experiments, including more nearly complete definition of the surface scattering function and, possibly, imaging. Targets of interest include the polar regions of Venus (by Magellan) and Mars (by Mars Observer), the enigmatic icy Galilean satellites of Jupiter (by Galileo), and Saturn's largest moon Titan (by Cassini)

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:31 ,  Issue: 2 )