By Topic

A review of synthesis techniques for Petri nets with applications to automated manufacturing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mu Der Jeng ; Dept. of Electr. Eng., Nat. Taiwan Ocean Univ., Keelung, Taiwan ; DiCesare, F.

Research results in both bottom-up and top-down synthesis techniques for Petri net modeling are reviewed. These methods can be adopted for representing parallel and distributed application environments such as automated manufacturing systems. Bottom-up techniques, consisting of the merging of places and sharing of simple elementary paths, have the advantage of ease of system description since the modeled subsystems usually have real-life correspondences. Nevertheless, with current bottom-up techniques, the synthesized system may not exhibit the same control properties as the subsystems. Top-down methods, including refinement of transitions and refinement of places, have the advantage of viewing the system globally, which may generate more structured designs. However, it is difficult to apply these methods to the environments with highly shared resources. Examples in the context of automated manufacturing systems are given to demonstrate application of these techniques. Petri net reduction techniques and their relationship to synthesis methods are discussed

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:23 ,  Issue: 1 )