By Topic

Analysis of noncoherent systems and an architecture for the computation of the system reliability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Upadhyaya, S.J. ; Dept. of Electr. & Comput. Eng., State Univ. of New York, Buffalo, NY, USA ; Pham, H.

An efficient technique for computing the reliability of k-to-l-out-of-n systems is presented. These kinds of systems find application in communication, multiprocessor, and transportation system environments. The k-to-l-out-of- n systems are very general and readily model coherent systems such as series, parallel, and N-modular-redundancy (NMR) systems. The algorithm presented computes in quadratic time in the worst case and yields superior results compared to existing algorithms for all permissible values of k, l, and n. The scheme is shown to evaluate the reliability in linear order-time. A cellular implementation of the algorithm in hardware is presented. The basic cell consists of a simple multiplier, an adder, and some switches that can be easily implemented in VLSI using computer-aided-design (CAD) tools. Ways of obtaining optimal configurations for the k-to-l-out-of-n system are discussed

Published in:

Computers, IEEE Transactions on  (Volume:42 ,  Issue: 4 )