Cart (Loading....) | Create Account
Close category search window
 

Application of learning theory to a single phase induction motor incipient fault detector artificial neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mo-Yuen Chow ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Bilbro, G.L. ; Sui Oi Yee

The generalization ability of a neural network in a specific application is of interest to many neural network designers. Learning theory, derived from maximum entropy, is applied to a neural network used for incipient fault detection in single-phase induction motors. The authors use learning theory to predict the proper number of training examples needed to reach a specific accuracy level (before actually training the network), so that excessive and unnecessary training examples and training time can be avoided. The results of learning theory are compared to actual training results to show the efficiency and reliability of the use of learning theory

Published in:

Neural Networks to Power Systems, 1991., Proceedings of the First International Forum on Applications of

Date of Conference:

23-26 Jul 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.