Cart (Loading....) | Create Account
Close category search window

Use of Karhunen-Loe've expansion in training neural networks for static security assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weerasooriya, Siri ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; El-Sharkawi, M.A.

A neural network (NN) for static security assessment (SSA) of a large scale power system is proposed. A group of multi-layer perceptron type NN's are trained to classify the security status of the power system for specific contingencies based on the pre-contingency system variables. Curse of dimensionality of the input data is reduced by partitioning the problem into smaller sub-problems. Better class separation and further dimensionality reduction is obtained by a feature selection scheme based on Karhunen-Loe've expansion. When each trained NN is queried on-line, it can provide the power system operator with the security status of the current operating point for a specified contingency. The parallel network architecture and the adaptive capability of the NN's are combined to achieve high speeds of execution and good classification accuracy. With the expected emergence of affordable NN hardware, this technique has the potential to become a viable alternative to existing computationally intensive schemes for SSA

Published in:

Neural Networks to Power Systems, 1991., Proceedings of the First International Forum on Applications of

Date of Conference:

23-26 Jul 1991

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.