Cart (Loading....) | Create Account
Close category search window

Self-avoiding random loops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dubins, L.E. ; Dept. of Math., California Univ., Berkeley, CA, USA ; Orlitsky, A. ; Reeds, J.A. ; Shepp, L.A.

A random loop, or polygon, is a simple random walk whose trajectory is a simple Jordan curve. The study of random loops is extended in two ways. First, the probability Pn(x,y) that a random n-step loop contains a point (x,y) in the interior of the loop is studied, and (1/2, 1/2) is shown to be (1/2)-(1/ n). It is plausible that Pn(x,y) tends toward 1/2 for all ( x,y), but this is not proved even for (x,y)=(3/2,1/2) A way is offered to simulate random n-step self-avoiding loops. Numerical evidence obtained with this simulation procedure suggests that the probability Pn (3/2,1/2)≈(1/2)-(c/n), for some fixed c

Published in:

Information Theory, IEEE Transactions on  (Volume:34 ,  Issue: 6 )

Date of Publication:

Nov 1988

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.