By Topic

Characterizing filtered light waves corrupted by phase noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Foschini, G.J. ; AT&T Bell. Lab., Holmdel, NJ, USA ; Vannucci, G.

The phase noise associated with single-mode semiconductor lasers must be accounted for in performance studies of lightwave communication systems. The standard phase noise model is a Brownian-motion stochastic process. Although many analyses of lightwave communication systems have been published, none, to the authors knowledge, has fully adhered to the standard model. The reason is that a proper characterization of filtered lightwave signal had not been achieved. Such a characterization, along with theoretical approaches to obtaining it, is detailed. The authors show, for example, how to generate probability density functions (PDFs) of the magnitude of a filtered laser tone (with special attention to the tail region) and how to analytically represent the characteristic function of the PDF in closed form in the small-phase-noise realm. With the characterization in place, the stage is now set for determining the bit-error rate performance of advanced detection techniques which seek to mitigate the phase noise impairment

Published in:

Information Theory, IEEE Transactions on  (Volume:34 ,  Issue: 6 )