By Topic

Ideal microlenses for laser to fiber coupling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Edwards, C.A. ; AT&T Bell Lab., Holmdel, NJ, USA ; Presby, Herman M. ; Dragone, C.

The design and fabrication of ideal microlenses for semiconductor laser to fiber coupling are reported. Properly coated for reflections, lenses of the new design can theoretically collect 100% of the radiated energy of a modal-symmetric laser source. The crucial feature is its hyperbolic shape. Microlenses fabricated directly on the end of the fiber by laser micromachining have demonstrated up to 90% coupling efficiency. This performance represents a major advance in microlens technology when compared to currently fabricated hemispherical microlenses which are at best 55% efficient. A theoretical comparison of the two lens shapes illuminates the advantages of the hyperbolic profile. The ability to couple all of the light from a semiconductor laser into a fiber has far-reaching implications for all optical communication systems

Published in:

Lightwave Technology, Journal of  (Volume:11 ,  Issue: 2 )