By Topic

Coset codes. II. Binary lattices and related codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
G. D. Forney ; Codex Corp., Canton, MA, USA

For pt.I see ibid., vol.34, no.5, p.1123-51 (1988). The family of Barnes-Wall lattices (including D4 and E 8) of lengths N=2n and their principal sublattices, which are useful in constructing coset codes, are generated by iteration of a simple construction called the squaring construction. The closely related Reed-Muller codes are generated by the same construction. The principal properties of these codes and lattices are consequences of the general properties of iterated squaring constructions, which also exhibit the interrelationships between codes and lattices of different lengths. An extension called the cubing construction generates good codes and lattices of lengths N=3×2n, including the Golay code and Leech lattice, with the use of special bases for 8-space. Another related construction generates the Nordstrom-Robinson code and an analogous 16-dimensional nonlattice packing. These constructions are represented by trellis diagrams that display their structure and interrelationships and that lead to efficient maximum-likelihood decoding algorithms

Published in:

IEEE Transactions on Information Theory  (Volume:34 ,  Issue: 5 )