By Topic

A generalized convergence theorem for neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Bruck ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; J. W. Goodman

A neural network model is presented in which each neuron performs a threshold logic function. The model always converges to a stable state when operating in a serial mode and to a cycle of length at most 2 when operating in a fully parallel mode. This property is the basis for the potential applications of the model, such as associative memory devices and combinatorial optimization. The two convergence theorems (for serial and fully parallel modes of operation) are reviewed, and a general convergence theorem is presented that unifies the two known cases. New relations between the neural network model and the problem of finding a minimum cut in a graph are obtained

Published in:

IEEE Transactions on Information Theory  (Volume:34 ,  Issue: 5 )